Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John C. Barnes

Department of Chemistry, University of Dundee, Perth Road, Dundee DD1 4HN, Scotland

Correspondence e-mail:
j.c.barnes@dundee.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.041$
$w R$ factor $=0.106$
Data-to-parameter ratio $=22.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[dibromozinc(II)]-di- $\mu-1,4-$ dioxan- $\left.\kappa^{2} O: O^{\prime}\right]$

The title compound, $\left[\mathrm{ZnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)\right]_{n}$ or ZnBr_{2}.(dioxan), has a zigzag chain structure in which the 1,4-dioxan molecules link tetrahedrally coordinated Zn atoms. Each dioxan ring sits on a centre of symmetry. The $\mathrm{Zn}-\mathrm{Br}$ distances are 2.3110 (8) and 2.3169 (8) \AA, and angle $\mathrm{Br} 1-\mathrm{Zn} 1-\mathrm{Br} 2$ is $124.53(3)^{\circ}$. The $\mathrm{Zn}-\mathrm{O}$ distances are 2.054 (4) and 2.043 (3) \AA, and angle $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ is $89.6(15)^{\circ}$.

Comment

1,4-Dioxan forms crystalline adducts with a very wide range of metal halides, nitrates and perchlorates. Phase diagrams of ternary systems (metal halide-dioxan-water) by Lynch and co-workers (e.g. Weicksel \& Lynch, 1950; Schott \& Lynch, 1966) show that there is competition between water and dioxan at 298 K . Some metals give a hydrate as the only solid product, others give only a dioxan adduct, and a third group form both of these together with ternary compounds.

(I)

Structural studies have shown that dioxan may be coordinated directly to a metal or may form hydrogen bonds with the H atoms of coordinated water molecules (e.g. Barnes \& Weakley, 1976; Barnes, 2004a). The chair-shaped dioxan molecules cannot chelate. They almost invariably form 1,4bridges in which each O atom usually coordinates to only one metal atom but may form one or two hydrogen bonds.
ZnCl_{2}.2(dioxan) (Boardman et al., 1983) has an unusual trigonal pyramidal chain structure which includes a monodentate dioxan. In the present work, we report the structure at 150 K of ZnBr_{2}.(dioxan), (I).

Fig. 1 shows that (I) consists of zigzag chains, parallel to c, in which dioxan molecules bridge tetrahedrally coordinated zinc atoms. The two independent dioxan molecules lie about the centres of inversion at $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ for $\mathrm{O} 1, \mathrm{C} 2$ and C 3 , and at $\left(\frac{1}{2}, 0\right.$, 0) for $\mathrm{O} 4, \mathrm{C} 5$ and C 6 . Selected geometric parameters are given in Table 1. The $\mathrm{Zn}-\mathrm{Br}$ distances are 2.3110 (8) and 2.3169 (8) \AA. These are significantly shorter than those in $\left[\mathrm{ZnBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} .2(1,8$-cineol) [2.360 (2) \AA, also determined at 120 K (Barnes, 2004b)] and the room-temperature structures of $\mathrm{K}_{2} \mathrm{ZnBr}_{4}$ (2.405 A ; Fábry et al., 1993) and $\mathrm{ZnBr}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2.483 \AA; Duhlev et al., 1988).

The sums of covalent radii are $\mathrm{Zn}-\mathrm{Br}=2.45 \AA$ and $\mathrm{Zn}-$ $\mathrm{O}=1.97 \AA$, while the sums of ionic radii give $\mathrm{Zn}-\mathrm{Br}=2.78 \AA$ and $\mathrm{Zn}-\mathrm{O} 2.28 \AA$. These values suggest that the $\mathrm{Zn}-\mathrm{Br}$

Received 4 June 2004 Accepted 9 June 2004 Online 19 June 2004

Figure 1
The structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. [Symmetry codes: (a) 1-x, $-y$, $1-z ;(b) 1-x,-y, 2-z$.]
interactions in all these compounds are largely covalent. The $\mathrm{Zn}-\mathrm{O}$ distances in (I) [2.054 (4) and 2.043 (3) \AA] are not significantly different from the $\mathrm{Zn}-\mathrm{OH}_{2}$ distances in $\left[\mathrm{ZnBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot 2(1,8$-cineol $)$ and $\mathrm{ZnBr}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

In (I), the torsion angles $\mathrm{C} 3 a-\mathrm{C} 2-\mathrm{O} 1-\mathrm{Zn} 1\left[155.3(2)^{\circ}\right]$ and $\mathrm{C} 5 b-\mathrm{C} 6-\mathrm{O} 4-\mathrm{Zn} 1\left[154.2\right.$ (2) ${ }^{\circ}$] show that the direction of the $\mathrm{O}-\mathrm{Zn}$ vectors is close to equatorial rather than the equatorial/axial average often found in dioxan complexes of metal salts (Barnes \& Weakley, 1976). Each of the fragments $\mathrm{Zn} 1-\mathrm{O} 1 \cdots \mathrm{O} 1 a-\mathrm{Zn} 1 a$ and $\mathrm{Zn} 1-\mathrm{O} 4 \cdots \mathrm{O} 4 b-\mathrm{Zn} 1 b$ has a torsion angle of 180° [symmetry codes: (a) $1-x,-y, 1-z$; (b) $1-x,-y, 2-z]$. The angle between the planes C2/C2al C3/C3a and C5/C5b/C6/C6b is only 25.2 (4) ${ }^{\circ}$. Taken together, these factors produce a very compact zigzag chain structure, which minimizes steric hindrance between the dioxan molecules at the Zn atom. This allows the $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ angle to be only $89.6(15)^{\circ}$ and so provides space for the unusually close approach of the Br atoms to the zinc, and the large $\mathrm{Br} 1-$ $\mathrm{Zn} 1-\mathrm{Br} 2$ angle of 124.53 (3).

Experimental

Crystals of (I) were obtained by slow evaporation of a solution of ZnBr_{2} in dioxan at room temperature, under anhydrous conditions.

Crystal data

$\left[\mathrm{ZnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)\right]$
$M_{r}=313.29$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=7.1326(2) \AA$
$b=12.0376(4) \AA$
$c=9.8312(3) \AA$
$\beta=99.4200(14)^{\circ}$
$V=832.72(4) \AA^{3}$
$Z=4$
$D_{x}=2.499 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2831
\quad reflections
$\theta=1.9-27.5^{\circ}$
$\mu=12.48 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Block, colourless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω cans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.052, T_{\text {max }}=0.083$
2831 measured reflections

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0512 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$	$+3.2775 P]$
$w R\left(F^{2}\right)=0.106$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.10$	$(\Delta / \sigma)_{\max }<0.001$
1885 reflections	$\Delta \rho_{\max }=1.37 \mathrm{e}^{-3}$
83 parameters	$\Delta \rho_{\min }=-0.96 \mathrm{e}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: $0.0142(10)$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.043(3)$	$\mathrm{Zn} 1-\mathrm{Br} 1$	$2.3110(8)$
$\mathrm{Zn} 1-\mathrm{O} 4$	$2.054(4)$	$\mathrm{Zn} 1-\mathrm{Br} 2$	$2.3169(8)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 4$	$89.60(15)$	$\mathrm{Br} 1-\mathrm{Zn} 1-\mathrm{Br} 2$	$124.53(3)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{Br} 1$	$111.75(11)$	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{Zn} 1$	$117.8(3)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{Br} 1$	$106.06(10)$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Zn} 1$	$122.1(3)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{Br} 2$	$107.24(10)$	$\mathrm{C} 5-\mathrm{O} 4-\mathrm{Zn} 1$	$119.1(3)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{Br} 2$	$112.16(11)$	$\mathrm{C} 6-\mathrm{O} 4-\mathrm{Zn} 1$	$121.9(3)$

The H atoms were included in calculated positions and treated as riding atoms; $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}$ (parent C atom). The highest peak lies on the $\mathrm{Zn} 1-\mathrm{Br} 1$ vector, 1.11 A from Zn 1 .

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

We thank the EPSRC and Professor M. B. Hursthouse for collection of data at Southampton University.

References

Barnes, J. C. (2004a). In preparation.
Barnes, J. C. (2004b). Private communication to the Cambridge Structural Database, deposition number CCDC-240396. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
Barnes, J. C. \& Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 17861790.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Boardman, A., Small, R. W. H. \& Worrall, I. J. (1983). Acta Cryst. C39, 10051007.

Duhlev, R., Brown, I. D. \& Fassiani, R. (1988). Acta Cryst. C44, 1696-1698.
Fábry, J., Breczewshi, T., Zúñiga, F. J. \& Arnaiz, A. R. (1993). Acta Cryst. C49, 946-950.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Schott, H. \& Lynch, C. C. (1966). J. Chem. Eng. Data, 11, 215-224.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. University of Utrecht, The Netherlands.
Weicksel, J. A. \& Lynch, C. C. (1950). J. Am. Chem. Soc. 72, 2632-2639.

